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A differential-nonlinear version of the theory of plasticity based on the model. 
of a linear anisotropically hardening plane-plastic medium [7] and the isotropy 
postulate CS 1, which has been verified by experimant under complex loading 

[4 -6 I. has been developed in [l-3 ] for plane deformation paths. In particular, 
dependences have been established between the stress and strain increments at 
an angular point of the loading trajectory. 

The dependences mentioned are extended below to the case of arbitrary ori - 
entation of a small additional loading relative to the preceding plane trajectory. The 

result obtained permits an approach to the formulation and solution of problems about 

the influence of the loading history on the magnitude of the critical parameters car - 
responding to bifurcation points of the process (Shanley formulation) and the bifurcation 
of states (Karman formulation) of thin walled structural elements from the aspect of the 
differential-nonlinear version of the theory of plasticity. Certain qualitative aspects 

of this question are clarified in the model of a plate subjected to bilateral compression 

[9 I. In particular, it is shown that a birfurcation point of the process precedes the bi- 
furcation point of the state if the method of fastening and loading the model during the 

branching imposes no constraints on the angle of the deformation trajectory broken-line. 
Within the framework of the differential-linear versions of the theory of plasticity, this 
result was obtained earlier for a three-dimensional body [lo - 121. A deduction is made 

that the Shanley critical load, determined taking the active loading history into account, 
exceeds the critical load determined by the Hencky-Nadai theory of deformations with- 

out taking account of the loading history. 

1. ON THE EQUATIONS OF STATE IN A SMALL NEIGHBORHOOD OF AN 
ANGULAR POINT OF THE LOADING TRAJECTORY. Let the loading of a linear aniso- 

tropically hardening plane-plastic medium [7 ] be characterized by an arbitrary tra - 
jectoryOAB(Fig. 1) in the SISs plane of the five-dimensional Il’iushin [8 1 space of 

stresses. We express the stress S and strain E vector components in terms of the ten- 
sor components (3ij, ail (i, j - z, y, z) by using the equalities. 

S1 = V/112(% - oy), Sz = f/3/2(% - o), S3 = jazzy, 

s4 = Jfz-rl/* 

S6 = 1/2Z,, ((Tii = Oi; Oij = Tij, i # j; Cl = ‘/3 (Gx + ‘T, + CT,)) 

El = vmx - q/)9 
- 

-G = f3i2 (G - 6, ES = v/‘/zr,, 

E4 = v/1/2r,z 

E6 = lf%zx (Eii = Ei; 2Eij = yij, i # j; E = l/z (l3, + 8, + E,)) 
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s, Let us apply a small additional load 
dS = BC from the point B and let us 

write the expression for the strain incre- 

ment dE. We still consider the veotor 
to be located in the plane SISs. 

If the response of a plane medium 
to strain anisotropy is characterized by 
a logarithmic function of the hardening 

F (0) = k ln (c / O) then according 
to [3] we can write in the auxiliary 

CSr’SO coordinate system (such a re- 
presentation of the relation 

is used for the first time) 

Fig. 1 

dS,’ = G, (2fQ9 dEl’, dS,’ = Gg (2g,,*) dE3’ 

G, = (& + B+ G, = (& + Bn)-’ 

Bll _ ’ JO(2a) 
r 2k In (2C/a) - 2aJ1 @a)] JO (2o) + & 

Brs = $ IJo2 (2a) + J12 (2a)], 2a = -$- - &* 

dS N dE 

(1.1) 

(1.2) 

Here G is the elastic shear modulus, J, (2a), J’, (2a) are Bessel functions, 2fils* 
is the angle formed by the tangents to the loading line X1, at the loading point C 
(Fig. 1). The functions G, and Gg, called the moduli of continuing loading and ad - 
ditional loading henceforth, are independent of the form of the trajectory, and pro - 
portional loading, in particular, can be used to determine them. 

It follows from (1.1) and (1.2 ) that the relation between dS and dE for 

arbitrary trajectories is determined completely by the angle of the singularity 2fir,* 
on the loading line 1 1s and its orientation 2x in the plane SISs. The argument 

2&s* of the functions Gp, Gg and the orientation parameter 2x depends ess- 

entially on the loading history and are functionals of the process. 
It should be noted that the invariance of the dependence of the angle of the 

singularity at the loading point and the vectors of the increments dS dE obtained 

above within the framework of the model [7] was formulated earlier by Kliushnikov 
as a postulate in the version of the theory of plasticity which he proposed [13]. 

The method of analytical construction of the loading line Z,, has been eluci- 
dated in [14] for the model of a linear anistropically-hardening plane-plastic medium, 
based on the concept of slip. In particular, the value of the angle 2pla* and its ori - 
entation 2% are determined by using two functions 2a = a2 (t) + a1 (t) and 2x = 
uz (t)-- al (t),where a, (t) and a, (t) are the boundaries of a set of slip directions, and 
the trajectory arclength is taken as the time parameter t . At an arbitrary loading 
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time, a, and oB are calculated from the condition that the resistance to shear S, 
and the velocity of its increment a&, / at in the direction of m of developing slip 
are, respectively, equal to the tangential stress i, acting over the slip area, and the 
velocity of the increment in the tangential stress a~,,, / 6~ 

Appropriate algorithms have been proposed in [3, 15,161; here we limit our- 
selves just to the following remarks. 

Let the trajectory OAB be smooth at B or accompanied by a break asshown 
in Fig. 1, but let the angle p between the direction dS and the bisectrix of the angle 

2/&s* at the point B not exceed the quantity PO determined by the formula 

1 
t’g Bo = 2aB In (2c / aB) 

JI @ad (1.3) 
-- 

JO(2aB) * aB = a @g) 

In this case the small additional load dS from the end of the trajectory OAB does not 
result in freezing of the slip systems occurring at the time rn - 0 preceding the break- 
point of the trajectory at the point B and 

c1r,2 (rn + O) = oi,a (tn - o), 2on = aa (tn -t 0) + al (tB -t O) 

Thus the value, of the angles 2p13* corresponding to the points B and C of the tra - 
jectory agree within the limit dS -+ 0 , and the relations (1.1) , (1.2 ) determine 
the differential-linear relation dSi’ N dE,’ independent of the direction dS within 
the cone fi < PO of the total additional load. 

If 0 > 3t - &*)n, then unloading occurs according to the elastic law and 
G, = G, = 2G. For (PO < p < 7c - (&,*)R) the increment dS will result in part- 

ial or total freezing of the slid systems, and therefore, to a jump change in the angles 

2p13* = n--2(a,-i-a,) and 2x=a,-al. In particular. if the vector dS is dir- 
ected along the line Z,,, then (z!P~‘~*)~ = x and the loading point on,Z,,becomes 

regular. 
For an imcomplete additional load (PO < p < rr - (f113*)B) the relation be- 

tween dSi’ and dEi’ determined by (1.1) and (1.2 > depends essentially on the dir- 
ection dS and therefore, is differentially nonlinear. The angle of the singularity ‘$$* 

at the point c and its orientation 2%~ are hence determined by (1.4 ) , where the 
parameter ac is computed from (1.5 > 

(@13*)C = t2h3*)B - 4 CUB - aC) (1.4) 
2xc = 2x, + 2 (ag - ac) 

(1.5) 

The results obtained for plane-plastic deformation on the basis of the isotropy 
postulate remain valid for arbitrary plane and spatial monotonic loading paths [3 ] ar - 
bitrarily located in the five-dimensional Il’iushin space [S]. Conditions for the model 

of a plane medium to satisfy the isotropy postulate are mentioned in [4 1. Replacing 

the logarithmic strengthening function F (0) by its general possible form [17 1 does not 
alter the crux of the question. 

ffow let us consider the case when the additional load dS is in the plane n 
passing through the 8, axis but rotated arbitrarily with respect to the preceding plane 

trajectory OAB (Fig. i 1. 
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Proceeding from tile above-mentioned invariance of the dependences of the 
loading angle 2p* and the vector increments dS, dE, as well as independences of 
the functions Gp, G, from the form of the trajectory for any plane and spatial mono- 
tonic loading paths, it is natural to assume that the mentioned invariance and indep - i 
endence of G, and Gg hold for arbitrary loading processes. Hence, by analogy with 
(1.1) for the small additional load dS oriented arbitrarily with respect to the preceding 

trajectory, we can write 

dS,’ = G, (2f3,,7*) dE;, dSrr’ = G, (2&n* )dEn’ (1.6 1 

Here 2p1n* is the angle formed by the tangents to the line of intersection between 
the loading surface Z and the plane rI. 

Let the additional load dS not result in freezing of the slip systems in the 
first and second cases. Then the increment dE,' 
as11 

is determined just by the component 
and is independent of the components dSs’ and dSn’, in particular dSs’ = 

asn' = 0 can be assumed without changing the quantity dE,/ . Hence, for an ar - 
bitrary point B of the trajectory we obtain on the basis of (1.1) and (1. 6) 

(1.7) 

According to (1.2 ), here G,, is a single-valued increasing function and total add - 
itional loading can be realized from an arbitrary point of the loading trajectory, hence 

(1.7 ) holds upon compliance with the condition 

B Brrr” 13 
*, (1.8) 

(The independence of Gil and G, from the angle fi within the total additional 

loading cone does not mean constancy of these functions with the change in pia*.) 

Taking into account that the orientation of n relative to the Sr’Sa’plane 

was selected arbitrarily, we arrive at the deduction that for any strain process the solid 
angle 2@* formed by the tangents to the loading surface Z at the loading point, is 

a hypercone of rotation. This result permits extension of (1.1) to the case of arbitrary 
orientation of the additional load vector relative to the plane trajectory GAB (Fig. 1). 

We have 

dS,' = G,,, (2\3*) dE,', dSi' =;G, (2/3*) dEi', i =.& 3, 4, :, (1.9) 

Here, as above, the continuing loading G, and additional load Gg moduli are de- 

termined by the relationships (1.2) S,'S,'S,'S,'S,' are a mutually orthogonal local 
coordinate system with origin at the running point G of the loading trajectory, where, 

S,’ is the axis of the hypercone of rotation formed by tangents to the surface 2 at 
the loading point 

2, ON BIIWCATION OP THE PROCESS AND STATE OF AN IDEALIZED 
MOD& OF A PLATE. Let us consider the Kliushnikov model consisting of two parallel 
square plates 2a X 2a with a total cross-sectional area f separated by a spacing 

2h and deformable in their planes by two pairs of rigid levers (see Fig. 1 in [9]. The 
ends of the levers and the forces P,, PI, acting on them remain in the xy plane: 
the process of the change in force during the time t is arbitrary. The plane equi - 
librium mode becomes unstable and model buckling occurs upon the achievement of 
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the combinations P, = fq., P,, = fa, 
dependent on the loading history. 

of certain critical values p,* , p,* 

In an infinitesimal neighborhood of the branch point, the equilibrium con - 
ditions of the external forces and moments, as well as the relation between the strain 
increment and the deflection dw of the center of the model are given by the equations 

[9 1 
@x + @?I = 0 (2.1) 
Pi& + LdQi = hfl2 (dot+ - doi-)! 

dw = aLJ2h (d&i+ - d&i-) (i - 59 Y; ’ 4L) 

where dQ, is the reaction of the support during buckling and do,*, d&t* are the 
additional stresses and strains to the initial state. ( Here and henceforth, quantities 
referring to the upper plate of the model are marked with the plus superscript, while 

those referring to the lower plate are marked with the minus. We consider the com- 
pressive stress and strain positive ; we do not exclude from consideration the unloading 
of the lower plate during buckling. 

Going over to the variables 

8, = V//, (0, - %)7 s, = 1/X (0, + a,) 

E, = J.fx (Ed - q,), E, = 1/x(&, + q,), Si = Ei =0, i> 3 

we obtain from (2.11, after eliminating dQx and dQ, 

dE,’ = dEl-, $S, (dEz+ - dEa-) = I/T (dS,+ - dS,-) 

These latter relationships can be rewritten thus in projections on the axis of the aux - 
iliary S,‘S,’ coordinate system ( Fig. 1) : 

dEl’+ cos 2x+ - dE,‘- cos 2x- = dE,‘+ sin 2x+ - (2.2) 
dE,‘- sin 2x- 

$ S,(dE,‘+ sin 2x+-dEl’- sin 2x- + dE,‘f cos 2x+ - dE,” cos 2~~) = 

v-- 
+ (dS,‘+ sin 2x+-- dS,‘- sin 2x-+dS,f’ cos 2x+-ddS,‘- cos 2x3 

First, let us consider the problem of determing the critical load in the Shanley 
formulation. Let the deformation process in an infinitesimal neighborhoodof the branch 

point occur without freezing of the slip system in both the upper and lower plates of 
the model because of the additional load increment dPi (PidPf > 0) * It will 

later be shown that such an assumption results in a minimum critical load, In the 

total additional load case under consideration we obtain 

(zp*)+ = (2p*)-( 2x+ = 2x-i 

and we have on the basis of (1.9) 

dS,‘* = G, (28”) dE;f, dS,’ = Gg (2fj*) dE,‘* 

Taking account of the last dependences, we obtain from the second equation in (2. 2 1 
for the Shanley critical load (S, = S,*) 
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Sz* = f$ $ [C, (2g*) sin” 2x. + G, (a/3*) CO2 2x1 (2.3) 

Partial or total freezing of the slip results in an increase in the moduli G$ and Gg 
according to (1.2 ) and (1.4 ) , hence (2.3 ) obtained under the assumption of total add- 

itional loading at the initial instant of buckling of the plate model, determines the 
minimal critical load. 

Now, let us examine the problem of determining the critical Karman load 
s,= s,** . In this case dPi = 0 and the vectors of the additional load incre - 

ments &j& in the upper and lower plates of the model are equal in magnitude but 

opposite in sign 

dS- = -dS+, p- = n + /3+ 

Without imposing preliminary constraints here on the magnitude of the angles 
of the additional load directions flc and p-, we can write for the upper and lower 
plates of the model from (1.9 ) 

</S1” = (; ,-* &rj,” I , d&‘-c -= G, d&T,‘* 

We hence obtain from the first equation of the system (2.2 ) 

(2.4) 

Taking into account that for a given subcritical state the moduli G,+, Gg* and the 

parameters %f are the functions of the angle p+, we conclude that the last equation 
is the definition of the additional load direction dS-‘- (ds- = -dSf) for bifurcation 

of the Karman state. 
It can be shown that the solution p+ = C&C+ of (2.4 ) is given by 

tgp,+ = (1 + g(l + $)-'ctg2x (2.5) 

if BI(+ does not exceed the values of fro and fi* . Here GO, Gfi and 2x are 
evaluated at the time tg - 0 preceding bifurcation of the statk. Bifurcation is 
hence accompanied by a complete additional loading of the upper and unloading by an 
elastic law of the lower plates of the model. Therefore, we can write 

(ES,‘+ = G,dE,‘+, dS,‘f = G,dE,‘+ (2.6) 

dS,‘- = 2GdE,‘-, dS,‘- = 2GdE2’- 

If the dependences (2.6 ) are substituted into the second equation in (2.2)) then we 
obtain for the Karman critical load 

ss** = 
V- 

p sin2 2% + D, cos2 2x) 
(2.7) 

D, = 2G, (1 + &)-‘, D, = 2G, (1 + &)-’ 

Since D, > Gp, D, > G,, a simple comparison of (2.3) with (2.7 ) results in the 
condition 
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s,* < as,** 
The equality S,* = S,** is possible only within elasticity limits when 

G, = $. I=: 2G, and we have for the critical load ‘(ss = s,,) 

As the magnitude of the plastic deformation grows in the subcritical state t it 
can turn out that the solution &+ of (2.4) will not satisfy the condition bk* < fi* 
and PO: (This can occur in the case fJ* < PO.) . Then the vectors ,dS+ anddS-:si- 

multaneously, or only dS- will emerge from the zone of total additional loading and 
unloading, respecti-rely, and will enter the zone of incomplete additional loading. 
In this case it is impossible to represent the formula for S2’* in a compact explicit 
form, however, as numerical computations show, even here-the condition Szi < s,** 

remains valid. It has therefore been shown that bifurcation of the process of a plate 

model precedes bifurcation of the state. As noted above, this deduction is an exten- 
sion of the known result on [lo -12] to the case of a differential-nonlinear variant of 
plasticity theory based on the slip concept. 

8, ON THE D~P~D~CE OF THE SHANLEY CRITICAL LOAD ON THE 
LOADING HISTORY, The papers [18 - 20 1, particularly, are devoted to a study of this 
question. Some aspects of the influence of the loading history on the critical para - 
meters are examined below on the basis of (2.3 > written for arbitrary loading paths for 
a plate model, 

If the strain process is monotonic in the 

sz subcritical state El: 1, in particular, is pro - 
QB portional, then the differential-nonlinear ver- 

sion of the theory of plasticity which was used 
will degenerate into the Hencky-Nadai theory 

04 of deformation. As has been shown in Cl9 1, 
in this case there exists an absolute stability 

domain I (Fig. 2). If it is taken into account 
0 

0 124 0 04 s 
in addition that G, = t/s Et, G, = 2i, E,, 

1 for monotonic strain, where E, and’r, are the 
Fig. 2 secant and tangent moduli of the (~~~‘~-‘a,, 

diagram under simple loading, then on the 

basis of (2.3 ) the equation of the line 1 bounding the domain t I .&an be represented 

in the form 
S* E,? 

( 

1 
7----- nsin2x 

i ( 
Is* 

s,* F 

s,,= 
- 
2G sln2x 

-_ v 
sm 2x ’ ,Zc=l-$ 

‘S ) 

The line mentioned is constructed in Fig. 2 for the aluminum alloy A K-hi (G = 
0.27 .I06 );z / c,G, xs = 410 R.Z / c.w2, c = 0,105 n, F = k In (c i w), G f k -= 8,.5). 

The magnitude of the critical load_ SW is taken as one in the computations and 
s,* I s,, ‘= 0.6. for Zx=ni2.Thezone S,,>% is the zone of elastic in- 

stability. 
Violation of the monotonicity condition in the subcritical state, just as at the 

time of bifurcation, results in an increase in the moduli G,, Gg and to growth of the 
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critical load as a whole. In this connection 1 is the absolute stability domain even 
for nonmonotonic active loading paths. A change in the quantity S,* under loading 

by a two-link trajectory OAB with a n i 2 breakpoint angle is shown in Fig. 2 by line 

2. The difference between curves 1 and 2 is insignificant. The authors of [al] 
arrive at an analogous deduction by an experimental investigation of the influence of 

the loading history on the magnitude of the critical parameters of a cylindrical shell 
loaded by an axial force and internal pressure according to two-lined trajectories. Let 
us note that the principal axes of the stress tensor under complex loading retain their 

constant direction in the cases under consideration. There is reason to assume that the 
influence of the history on the critical load of thin-walled structure elements can be 

substantial under complex loading with rotation of the principle axes of the stress tensor. 
As follows from (2.3 ) , for a model a significant rise in S,* is achieved on 

loading paths close to complete freezing of the slip system, when G,, G, - 2G. 

The following possibility also merits attention. The domain within the initial xr2’or 
the next Z,, loading line (Fig. 2) satisfying the condition 8, < SW is the elastic 
stability domain. Therefore, a significant rise in S,* can be obtained (points of zone 

II are reached ) by preliminary loading of the model in the plastic domain outside the 

bifurcation limits, which is realizable upon the imposition of additional kinematic 

constraints. Unloading and repeated loading within the line 21, with the additional 

constraints removed does not result in bifurcation of equilibrium if s,* < SW. In 
particular, there is a discussion of an analogous possibility in [20 I. 

REFERENCES 

1. Shvaiko, N. Iu., Equations of the elastic-plastic state of a linear anisotrop- 
ically hardening medium. Izv, Akad. Nauk KirgizSSR, NO. 2, 1966. 

2. Shvaiko, N. Iu., On the theory of a linear anisotropically hardening medium, 

Inzh. Zh., Mekhan. Tverd. Tela, No. 1, 1967. 

3. Shvaiko, N. Iu., Methods of solving equations describing the deformation laws 
of a linear anisotropically-hardening plane-plastic medium. In: Complex Deform - 

ation of a Solid. Ilim , Frunze , 1969. 

4. Shvaiko, N. Iu., Klyshevich, Iu. V., and Rychkov, B. A., Linear 
a~otropica~y hardening medium. In: Plasticity and Brittleness, “Ilim”. Frunze, 1967. 

5. Kudriashov, N. N., Rychov, B.A., and Shvaiko, N. Iu., Theoretical 
and experimental investigation of the deformation laws for the aluminum alloy AK-6 

under complex loading. Izv. Akad. Nauk KirgizSSR, No. 1, 1970. 

6. s hv ai ko, N. Iu., M aka r en kov, A. G., et al., On the limits of applicability 
of the theory of small elastic-plastic deformations under nonproportional loading of 

the alloy VT-6s. Prikl. Mekhan., Vol. 12, NO, 2, 1976. 

7. Leonov, M.Ia. andshvaiko, N. Iu., Complex plane deformation, Dokl. 
Akad. Nauk SSSR, Vol. 159, No. 5, 1964. 

8. Il’iushin, A, A., Plasticity. Principles of the General Mathematical Theory. 

USSR Academy of Science Press, Moscow, 1963. 



Certain problems of the bifurcation of the elastic-plastic process 969 

9. Kliushnikov, V. 4, Stability of the process of idealized plate compression. 
Inzh. Zh., Mekhan. Tverd. Tela, No. 4, 1966. 

10. Kliushnikov, V. D., Bifurcation of the deformation process and the concept 
of continued loading. Izv. Akad. Nauk SSSR, Mekhan, Tverd. Tela, No. 5,1972. 

11. Hill, R., Some basic principles in the mechanics of solids without a natural 
time. J. Mech. Phys. Solids, Vol. 7, No. 3, 1959. 

12. Chakrabarty, J., On the problem of uniqueness under pressure loading. 
Z. angew. Math. und Phys., Vol. 20 ~ No. 5, 1969. 

13. Kliu.shnikov, V. D., On a possible manner of constructing the plasticity 

relations, PMM, Vol. 23, No. 2, 1959. 

14. Shvaiko, N.Iu., On the developement of a deformation anisotropy for mono- 
tonic loading of a linear anisotropically hardening plane-plastic medium. In: 
Deformation of an Inelastic Body. ” Ilim, Frunze , 1970. 

15. Shvaiko, N.Iu., and Kudriashov, N.N., Deformation of a linear aniso- 
tropically hardening medium under loading by a two- linked broken line. In: Complex 

Deformation of a Solid. ” Ilim” , Frunze , 1969. 

16. Cherniavskii, Iu. E., Relation between stress and strain under a loading by 
means of three-linked trajectories. In: Stability and Strength of Structural Elements, 

No. 2, Dnepropetrovsk Univ. Press, 1975. 

17. Shvaiko, N. Iu., On a possible general form of the hardening function of a 
linear plane-plastic medium. In : Hydro-aeromechanics and Elasticity. Theory, No, 
14, Dnepropetrovsk Univ. press, 1972. 

18. Gemmerling, G.A., Influence of the loading path on the characteristic di- 
mension of a plate at which its buckling occurs. Izv. Akad. Nauk SSSR, Mekhan. 

i Mashinostroenie, No. 1, 1964. 

19. Kliushnikov, V. D., On the dependence of the critical loads on the loading 
history of elastic-plastic plates. In: Mechanics of Deformable Bodies and Structures, 

Mashinostroenie, Moscow, 1975. 

20. Kliushnikov, V. D., On some pecularities of the instability phenomenon 
outside the elastic limits. In: Progress in the Mechanics of Deformable Media. 

” Nauka I’, Moscow, 1975. 

21. Bozhinskii, A.N. and Ponomarev, A. I’., Experimentalinvestigation 
of the bucl&ng of cylindrical shells under the combined effect of axial compression 

and internal pressure, Prikl. raekhan., Vol. 1, No. 10, 1965. 

Translated by M. D. F. 


